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ABSTRACT 
Datacenters provide high performance and flexibility for users 

and cost efficiency for operators. Hyperscale datacenters are 

harnessing massively scalable computer resources for large-

scale data analysis. However, cloud/datacenter infrastructure 

does not scale as fast as the input data volume and 

computational requirements of big data and analytics 

technologies. Thus, more applications need to share CPU at the 

node level that could have large impact on performance and 

operational cost. To address this challenge, in this paper we 

show that, concurrently fine-tune parameters at the application, 

microarchitecture, and system levels are creating opportunities 

to co-locate applications at the node level and improve energy-

efficiency of the server while maintaining performance. Co-

locating and self-tuning of unknown applications are 

challenging problems, especially when co-locating multiple big 

data applications concurrently with many tuning knobs, 

potentially requiring exhaustive brute-force search to find the 

right settings. This research challenge upsurges an imminent 

need to develop a technique that co-locates applications at a 

node level and predict the optimal system, architecture and 

application level configure parameters to achieve the maximum 

energy efficiency. It promotes the scale-down of computational 

nodes by presenting the Energy-Efficient Co-Locating and Self-

Tuning (ECoST) technique for data intensive applications. 

ECoST proof of concept was successfully tested on MapReduce 

platform. ECoST can also be deployed on other data-intensive 

frameworks where there are several parameters for power and 

performance tuning optimizations. ECoST collects run-time 

hardware performance counter data and implements various 

machine learning models from as simple as a lookup table or 

decision tree based to as complex as neural network based to 

predict the energy-efficiency of co-located 

applications.  Experimental data show energy efficiency is 

achieved within 4% of the upper bound results when co-locating 

multiple applications at a node level. ECoST is also scalable, 

being within 8% of upper bound on an 8-node server. 

1. INTRODUCTION 

applications in the emerging domain of big data. 
Hyperscale datacenters have gained interest as a promising 
computing architecture that is designed to provide a scalable 
solution to process mass volume of data [42]. Recent improvements 
in the networking, storage, processing and infrastructure 
management [10, 11] has made hyperscaling a preferable approach 
to respond to the challenges associated with big data. However, 
introducing more nodes to existing infrastructural creates challenges 
for datacenters providers to balance computational power and 
energy efficiency. In addition, the total cost of ownership (TCO) 
in hyperscale data centers is one of the major limiting scaling factors. 
To address these challenges, many recent works address the need to 
use hardware specialized accelerators to increase the performance 
by using fewer number of nodes [11]. However, specialized 
accelerator reduces the preferable homogeneous computing 
environment in datacenters and increases the compatibility issues 
for the target big data workloads that are diverse in nature and are 
changing at a rapid rate.  In addition, the increase in heterogeneity 
and in the demand of data center workloads causes an increase in the 
infrastructure operating costs. With the substantial expected 
increase in the operational cost reflected by the higher energy 
consumption and cooling cost of the data center, a need for 
microserver-based architectures has been proposed as an alternative 
to traditional high-performance architectures to process big data 
applications [1, 23, 41].  

With the significant increase in the volume of data, more 
applications are migrating to cloud. However, cloud infrastructure 
is not scaling as fast as the size of data is increasing. Thus, more 
applications need to be scheduled at the node level. Therefore, the 
question of how to co-locate and configure data-intensive 
applications automatically for energy efficiency becomes important 
to contain the TCO. In a data-intensive framework such as 
MapReduce, configuration parameters, as well as application and 
architectural parameters, directly affect its performance and energy 
efficiency [22].  Through an extensive and methodical investigation 
of performance and energy-efficiency of MapReduce applications, 
[32] examine the impact of application, system, and architectural 
tuning parameters and the interplay among them on the performance 
and energy efficiency for various MapReduce applications. The 
results demonstrate how the interplay among various MapReduce 
configurations as well as application and architecture level 
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parameters create new opportunities to co-locate MapReduce 
applications at the node level. In addition, authors have discussed 
two optimization strategies; Individually-Located Application 
optimization (ILAO) that runs the applications serially where each 
application is tuned individually and Co-Located Application 
Optimization (COLAO) that tunes the collocated applications 
concurrently at a node level. Given that both of these techniques are 
offline and rely on extensive brute force search to find the best 
configuration parameters for co-located MapReduce applications, 
there is an imminent need to develop a technique that can identify 
which applications to co-locate at a node level and how to self-tune 
the optimal configure parameters at the system, architecture and 
application level to achieve the maximum energy efficiency. 
Towards this goal, we develop an energy efficient co-locating and 
self-tuning technique, referred as ECoST, for data intensive 
applications. While ECoST proof of concept has been successfully 
tested on MapReduce framework, which is still a de facto 
programming standard of big data and has been adapted widely by 
industry and has a large community [2, 3], it can also be deployed 
in other data-intensive frameworks where there are several 
parameters for power and performance tuning optimizations. 

The key features of ECoST are 1) pairing applications to co-
locate at a single node level with the minimum performance 
degradation due to resource sharing, and 2) self-tuning prediction 
(STP) techniques that predict the optimal application, system and 
architectural parameters at run-time for the co-located MapReduce 
applications to achieve maximum energy efficiency. By decoupling 
the decision to co-locate applications and tuning parameters 
concurrently, we significantly simplify the complex optimization 
problem of searching for the best pair of applications to co-locate at 
the node level, and simultaneously navigating the wide array of 
tuning parameters for each application. In addition, we develop 
distinct machine learning based models to implement STP including 
Linear Regression (LR), REPTree, and Multilayer Perceptron (MLP) 
as well as the Lookup Table (LkT) model. These learning models 
are significantly different as they have different complexity. All of 
these predictive methods are online and will be compared with two 
offline scheduling strategies ILAO and COLAO mention in [32]. 

A closest work to ours is Bubble-up [20], in which authors 
introduce a characterization and profiling methodology and predicts 
the performance degradation between pairwise application co-
locations. Co-locating traditional desktop and parallel applications 
and tuning the underlying processor (such as adapting the voltage 
and frequency [17]) has been well studied in the literature [8, 12]. 
However, data intensive applications such as in MapReduce, have 
fundamentally different micro-architectural behavior than 
traditional applications highlighted in recent work [23], while at the 
same time having significantly more tuning optimization knobs. 

For MapReduce applications, it is important to evaluate which 
resources (CPU utilization, memory footprint, I/O read and write, 
etc.) are bottlenecks and how system-level (number of mappers 
running simultaneously in a compute node, HDFS block size), 
application-level (application type and input data size) and 
architectural-level (operating voltage and frequency) tuning 
parameters affect the performance, power, and energy-efficiency. 
While several recent works [16, 14] show how tuning individual or 
a subgroup of tuning parameters at a time improves performance or 
energy-efficiency, they have ignored the interplay among all of these 
parameters at various level of abstractions. In addition, while all of 
the prior work mainly focused on fine-tuning optimization 
parameters for individual applications and in isolation, they have not 

studied opportunities for co-optimizing these tuning parameters for 
multiple scheduled applications, simultaneously, which is a more 
challenging problem to address. 

To the best of our knowledge, this is the first work that addresses 
these challenges to identify which applications to co-locate at a node 
level and determine machine-learning based self-tuning predictive 
models to maximize the energy efficiency. In this paper, our analysis 
helps to determine how critical it is to jointly fine tune system, 
application and architecture level parameters that creates new 
opportunities to co-locate MapReduce applications concurrently, 
and how to determine these best tuning parameters at the system, 
application, and architecture using self-tuning prediction techniques 
to achieve the maximum energy efficiency. 

2. EXPERIMENTAL SETUP 
This section describes our hardware and software platforms used 

to run real experiments on reasonable server hardware, studied 

application and the tuning parameters, our measurement 

methodology, and tools used to enhance our results analysis. 

2.1 Hardware/software infrastructure 
We conduct our study on an 8-node cluster comprised of Intel 

Atom C2758 CPUs. It is important to note that while the choice of 
microserver for self-tuning is more challenging due to limited 
availability of hardware performance counters compared to high 
performance servers such as Xeon, all of the methodologies and 
solutions presented in this work can be applied to high performance 
servers as well and similar results can be observed. Considering that 
MapReduce applications are sensitive to the studied configuration 
parameters regardless of the CPU architecture type, optimization 
strategies results would remain valid on a high-performance server 
architectures as well.  

Each studied Intel Atom has 8 processor cores per node and a 
two-level cache hierarchy with 8GB of system memory using DDR3 
@1600MHz. Although, new big data frameworks have emerged in 
recent years in response to continues changes in big data analytics 
field; examples include Spark, Tez, Flink, and Petuum, just to name 
a few, MapReduce framework such as Hadoop and Spark are still a 
de facto standard of big data which has been adapted widely by 
industry and has a large community. While not all emerging big data 
analytics framework can certainly be included for characterization 
and benchmarking in one research work, this paper focuses on the 
fundamental Hadoop MapReduce framework for a proof of concept 
of ECoST. Our solutions can also be applied to Spark MapReduce 
applications, as well as other data intensive frameworks that have 
many power and performance tuning knobs. For this study, we have 
selected the parameters that are system configurable and transparent 
to the user space, namely HDFS block size, input data size per node, 
number of mappers, and the operating frequency of the processor. 
While there are more tuning parameters to be included, this paper 
attempts to provide an in-depth understanding of how concurrent 
tuning of the studied parameters at various levels can affect the 
performance and energy efficiency. The buffer page caches are 
flushed at the start of each run to ensure that data is read fresh from 
HDFS.  

2.2 Application Diversity 
A Hadoop MapReduce cluster can host a variety of big data 

applications running concurrently. We have included 11 widely used 

Hadoop applications in this research. Four applications are Hadoop 

micro-benchmarks, namely Wordcount-WC, Sort-ST, Grep-GP and 

TeraSort-TS that are used as kernels in many big data applications. 
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We have also included seven real-world applications namely Naïve 

Bayes (NB), FP-Growth (FP), Collaborative Recommendation 

Filtering (CF), support vector machine (SVM), PageRank (PR), 

Hidden Markov Model (HMM), and K-Mean (KM) [19].  

The studied big data workloads are representative programs from 
15 different domains such as graph mining, data mining, data 
analysis platform and pattern searching applications, which are 
frequently used in real world applications. Several recent work have 
included these selected applications for benchmarking and 
characterization of Hadoop-based big data applications [18].  

2.3 Input Data Size 
The size of data can have significant impact on micro-

architectural behavior [22]. For this research, we therefore use 3 

input data sizes per node for each application; 1GB, 5GB, and 10GB 

representing small, medium and large data sets. For instance, 10GB 

input data size per node presents 80GB input data size processed by 

application in an 8-node cluster. While MapReduce was originally 

introduced to process multi-terabyte data in scale-out clusters, most 

MapReduce workloads have a footprint in the GB range with the 

median of 14GB [30]. Hadoop exploits cluster-level infrastructure 

with many nodes for processing big data applications, however, the 

experimental data should be collected at the node level to understand 

how various optimizations and scheduling decisions affects the 

performance, architectural parameters and energy-efficiency at the 

node level. 

2.4 Interdependent Tuning Parameters 
We have studied the impact of the system, application, and 

architectural level tuning parameters including the HDFS block size 
(64MB, 128MB, 256MB, 512MB, 1024MB), the number of 
mappers that run simultaneously on a single node (1-8), and 
frequency settings (1.2GHz, 1.6GHz, 2.0GHz, 2.4GHz) to evaluate 
how these parameters affect energy efficiency. 

2.5 Measurement Tools 
We use Perf to capture the performance characteristics of the 

studied applications. Perf multiplexes the Performance Monitoring 
Unit (PMU) to measure performance as well as other hardware 
events, therefore, to obtain accurate values for several hardware 
events, we run each workload multiple times. For measuring power 
consumption, Wattsup PRO power meter [5] measures and records 
power consumption at one-second granularity. The power reading is 
for the entire system, including core, cache, main memory, hard 
disks and on-chip communication buses. We have collected the 
average power consumption of the studied applications and 
subtracted the system idle power to estimate the power dissipation 
of the core. The same methodology is used in [22], for power and 
energy analysis. We use Dstat [6], a system-monitoring tool for 
main memory, disk, and CPU utilization analysis and Weka toolkit 
[4] to build our machine learning based predictive models. 

2.6 Energy Efficiency Metric 
In order to characterize the energy efficiency analysis, we 

evaluate Energy Delay Product (EDP) metric to investigate trade-
off between power and performance [31]. Energy Delay Product 
(ExecutionTime x ExecutionTime x Power) is a fair metric to study 
the impact of changing optimization knobs of an architecture. 
Without EDP and just using energy metric for comparison, we can 
simply reduce the voltage and frequency in an architecture, and 
reduce its energy, however at a cost of lowering the performance 
(increased execution time). Therefore, performance along with 
energy is important to find out the impact of optimization parameters.  

3. MapReduce Applications Characterization  
In this section, we characterize MapReduce applications by 

monitoring the real time system resources as well as micro-
architectural metrics to understand their runtime behavior and 
resource utilization. This analysis helps us to generalize the optimal 
configuration parameters with respect to the application type. 
3.1 Resource Utilization Analysis  

To explore the resource utilization of MapReduce applications, 
we collect the following metrics: 

 CPU utilization. The dstat profiling tool classifies CPU 
utilization into different types such as CPUuser, CPUidle, 
CPUiowait, etc. We collect the data for CPUuser utilization 
which represent CPU usage by a user (usr) processes - and 
CPUiowait which represents the percentage of time CPU is idle 
waiting for I/O operation to complete. 

 I/O read/write Bandwidth, which reports the disk I/O 
bandwidth rate.  

 Memory Footprint, which reports the minimum amount of 
memory (in KB) required to run the application. Additionally, 
the MemCache metric shows the amount of file contents kept 
in the cache that are yet to be written to the disk. 
In addition, we have included several micro-architectural 

parameters including, IPC, Instruction Cache Misses per Kilo 
instructions (MPKI), LLC MPKI, and Branch Misprediction rate. 

3.2 PCA and Clustering Analysis 
Unfortunately, there is no single perfect hardware counter that 

accurately indicates performance behavior of an application. There 

is substantial debate about what hardware counter event can 

accurately indicate performance across a variety of applications [1, 

29]. In this paper, several micro-architectural metrics and runtime 

resource utilization metrics are collected and are used in identifying 

MapReduce application characteristics. However, collecting all of 

the performance counter data requires multiple runs because the 

counter resources are multiplexed in the microserver. In order to 

avoid multiple runs, we would like to identify a minimal set of 

counters that can be collected in a single run, maximizing correlation 

with performance, while minimizing redundant counters (correlated 

to each other). These should be representative of application, 

software stack, and micro-architecture interactions in the presence 

of various system calls.  

A systematic approach for this purpose is to use Principal 

Component Analysis (PCA). PCA analysis allows us to monitor the 

 
Figure 1: Scatter plot of feature metrics using first and second 

principal components 
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most vital and distinct micro-architecture parameters to capture 

application characteristics. PCA captures most of the data variation 

by rotating the original data to a new variable in a new dimension, 

commonly known as the principal components (PC). These new 

variables are uncorrelated to each other and are a linear combination 

of the original data. We employ PCA to project our 14 original 

gathered features into a new dimensional space to determine the 

most important features along different PC dimensions. The number 

of PCs can be less than or equal to the number of original data 

variables. In Figure 1, we only present the first two PCs covering 

85.22% of the total variance due to space limitation. PCA is 

sensitive to the relative scaling of the original variables. Thus, we 

have normalized the data to the unit normal distribution for 

segregating the impact of the variable range of each feature metric. 

Figure 1 shows the scatter plot of the first and second principal 

components, PC1 and PC2. Features that appear closer in this Figure 

typically exhibit similar behavior.  

Later, we apply a hierarchical clustering technique to group 

similar features and finally analyze the results as shown in the Figure 

1. We have reduced the features to 7 most important and distinct 

ones that are CPUuser, CPUiowait, I/O Read, I/O write, IPC, 

Memory Footprint, LLC MPKI to characterize the MapReduce 

applications. Based on these resource profiling and micro-

architectural characteristics, the applications are characterized into 

compute-bound (C), combination of compute-bound, I/O-bound 

referred to as hybrid (H), memory-bound (M), and I/O-bound (I) 

classes. For instance, the CPU user utilization of wordcount is higher 

than the average user utilization of the studied applications and with 

low CPU iowait utilization and I/O bandwidth (read/write) rates this 

application is categorized as compute intensive. We observe that the 

optimal configuration parameters for maximum efficiency are 

highly correlated to application type (I/O bound, compute-bound, 

memory-bound or hybrid), which can be identified by underlying 

micro-architectural behavior. The same methodology is used in [34].   

 

4. Motivation for Fine Tuning and Co-locating 
Applications at Node Level  

Hadoop MapReduce performance and energy efficiency is 
sensitive to many configuration and system parameters; however, 
we focus on the parameters that are system configurable and 
transparent to the user space, configurable at the user level. This 
analysis helps us to determine, 1) whether fine tuning parameters 
create new opportunities for co-scheduling applications at the node 
level, and 2) whether it is important to carefully fine-tune parameters 
to co-locate applications at the node level and still be energy 

efficient.  

4.1 EDP Improvement Analysis 
To determine how important it is to jointly tune the optimization 

parameters, we calculate the EDP for various tuning parameters 

individually and concurrently. If the EDP improvement is found to 

be large, it highlights the importance of carefully fine-tuning 

parameters for energy-efficiency; otherwise, an arbitrary selection 

would be sufficient. To understand the variation in energy efficiency 

with respect to the tuning parameters we present EDP improvement 

analysis results in Figure 2 by changing HDFS block size and 

frequency individually and concurrently. All EDP results are 

normalized to the EDP result of 64MB HDFS block size running at 

the minimum operating frequency of 1.2GHz.  

 The results show that EDP improvement to HDFS block size 
becomes smaller with the increase in the number of mappers. 
Similarly, EDP improvement to operating frequency becomes 
smaller with the increase in the number of mappers. We also observe 
that the concurrent tuning of HDFS block size and frequency 
achieves the highest EDP improvement compared to when tuning 
them individually. The EDP improvement achieved by concurrently 
tuning HDFS block size and operating frequency ranges from 3.73% 
to 87.39% compared to the individual tuning parameters. In addition, 
the results show that the margin of EDP improvement decreases 
with the increase in the number of mappers. It is important to note 
that it is not ideal in datacenters to assign all cores of a single node 
to a single application, especially for an I/O intensive application 
that exhibits a low CPU utilization. 
Remark: The results show that applications are more sensitive to 

frequency and HDFS block size at small number of mappers. 

Therefore, to co-locate applications at the node level, while each 

would get fewer mappers/cores allocated, it is critical to determine 

the fine-tuned these parameters to observe EDP improvement.  

4.2 Co-Locating Applications at the Node Level 
As discussed in the previous section, careful fine-tuning of  

 
Figure 3: EDP improvement of training workloads with the same 

input data size  

 
Figure 2: EDP improvement analysis w.r.t. HDFS block size and Frequency (individually) and HDFS block size + Frequency (concurrently) 
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parameters made it more likely that maximum energy efficiency is 
achieved without utilizing all cores. Thus, we illustrate that co-
locating MapReduce applications on the same server are typically 
effective, particularly when the application types are diverse and 
have different bottlenecks, as long as they are carefully (and 
cooperatively) tuned.  

To compare co-located tuned applications with the individually 
tuned applications, we study two different optimization strategies: 
individually-located application optimization (ILAO) and co-
located application optimization (COLAO). This helps us 
understand whether tuning MapReduce applications together or 
individually will provide better EDP. 

ILAO runs the applications serially where each application is 
tuned individually to achieve the maximum energy-efficiency. 
COLAO runs multiple applications at a node where application 
tuning parameters are optimized concurrently for maximum 
energy-efficiency. 
In both studied optimization strategies, various combinations 

of tuning parameters are explored to find the one that maximizes the 
energy efficiency. At the node level given the availability of 8 cores 
we can co-locate 8, 6, 4, 2, and 1 application simultaneously. 
However, our results indicate that while 2 co-located applications 
provide improvement over 1 application in terms of energy 
efficiency, co-locating beyond 2 applications (i.e. 4, 6 and 8) at a 
node level degrades energy efficiency significantly. Therefore, 
throughout this paper we focus mainly on co-locating 2 applications 
at the node level.  

Figure 3 presents the EDP ratio of ILAO and COLAO 
techniques. The studied applications are classified into compute-
bound (C), combination of compute-bound and I/O-bound referred 
to as hybrid (H), memory-bound (M) and I/O-bound (I) classes. We 
have performed experiments with different combinations of input 
data sizes across all studied applications, however due to space 
limitation; Figure 3 shows EDP comparison of studied optimization 
policies when co-located MapReduce applications have same input 

data size.  The presented COLAO results are normalized to their 
corresponding ILAO values. We observe that in almost all studied 
cases COLAO outperforms ILAO in terms of EDP (by upto 4.52x). 
Pairing I/O bound applications together results in the highest EDP 
gap of 4.52x between COLAO and ILAO. However, the EDP gap 
reduces between the two techniques when the memory bound 
applications are co-located with other applications. This is because 
a memory bound application with high execution time typically 
prefers the maximum number of cores/mappers and suffers when 
sharing. Overall, the results support the idea of co-locating and 
concurrent fine-tuning of applications rather than scheduling/fine-
tuning them individually.  

Given that both of these techniques are offline and rely on 
extensive brute force search to find the best configuration 
parameters for co-located MapReduce applications, there is an 
imminent need to develop a technique that can identify which 
applications to co-locate at a node level and how to self-tune the 
optimal configure parameters at the system, architecture and 
application level to achieve the maximum energy efficiency.  

5. Energy-Efficient Co-locating and Self-Tunning 
(ECoST) 
In this section, we propose our technique for energy-efficient  

    
Figure 4: Overview of ECoST 

 
Figure 5: Priority ranking for each co-located class based on EDP  
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co-locating and self-tuning of MapReduce applications, called 
ECoST. The purpose of this technique is to first classify the 
incoming unknown applications to the datacenter in terms of their 
architectural behavior and then co-locate and fine-tune them on the 
microserver to achieve maximum energy efficiency. By decoupling 
the decision to co-locate and tune parameters, ECoST significantly 
simplifies the complex optimization problem of searching for the 
best combination of applications to co-locate onto a single node, and 
simultaneously navigating the wide array of tuning parameters for 
each application and their interactions between the applications.  
Figure 4, shows an overall view of the ECoST. New jobs 
(applications) are arriving to the datacenter and are placed at the tail 
of a wait queue. The wait queue is implemented as a FIFO where 
applications are scheduled from the head of the queue. To avoid 
starvation, the job at the head of the queue has a reservation. A small 
job is allowed to leap forward as long as it does not delay the job at 
the head of the queue [24, 40].  

 Based on what observed in the previous section, it is more 
energy-efficient to co-locate and concurrently fine-tune applications 
rather than running/fine-tuning them individually. Therefore, for 
ECoST scheduler we are assuming that two applications are 
scheduled (running) on each server node, and several other 
applications are waiting in the wait queue to be paired as soon as any 
one of the two applications finishes its execution.  

Thus, the research question becomes in steady state which 
application from the wait queue to pair with the current application 
running on the server node. To address this issue, ECoST works in 
the following steps.  
Step1: Incoming Application Analyzer/Classifier 

The classifier identifies the behavior and characteristics of 
unknown incoming applications to the datacenter. First, ECoST 
extracts distinct architectural features from the application. Second, 
it classifies the application based on the characteristics of known 
(training) applications. The training applications are classified into 
compute-bound (C), combination of compute-bound and I/O-bound  
referred to as hybrid (H), memory-bound (M) and I/O-bound (I)  

classes.  
Once an incoming application is classified based on collected 

architectural features, it is tagged accordingly and steers into the 
pool of applications queue; wait queue. As discussed the wait queue 
is implemented as FIFO, where applications are allocated from the 
tail and selected from the head.  
Step 2: Scheduler   

The ECoST scheduler attempts to find an application from the 
head of wait-queue and co-locate it to the node that is currently 
running another application. The goal of the scheduler is to select 
the applications to co-locate, which minimizes degradation relative 
to running alone. This is in fact a local decision and only attempts to 
maximize the energy-efficiency for the applications already 
reserved in the head of the queue. It is important to note that the 
reservation of applications at the head of the queue is important as it 
can alleviate possible starvation of low priority application [24, 40]. 
As discussed, a small job is allowed to leap forward as long as it 
does not delay the job at the head of the queue. To drive the pairing 
strategy we use application class information. To this goal, we use 
priority ranking of each class, derived from the data in Figure 5. This 
figure shows the EDP results for every combination of two 
applications along with every combination of core partitioning with 
the tuned configuration parameters. The solid line shows the lowest 
EDP for each pair of applications across all core partitioning 
scenarios. We rank each application pair based on the lowest EDP 
they have, within all combinations of core partitioning. As shown, 
I-I ranks first and achieves the lowest EDP across all studied cases. 
I-C, I-H, H-H, H-C, C-C are ranked next. It is interesting to note that 
for M application, no matter what other application it pairs with, it 
achieves the highest EDP. Therefore M-X (X being I, H, C or M) 
receives the lowest ranking.  

To find out which application ECoST selects from the wait 
queue to schedule and run along with the current application running 
on the server, we analyze the data presented in Figure 5. As shown, 
I-I has the lowest EDP compared to I-H, I-C, and I-M; i.e. if the 
current application is I, then co-locating it with another I application 
waiting in the wait queue minimizes the EDP across all studied cases. 
Interestingly, when the current application is H, or C, or even M, 
pairing it with an I application from the wait queue minimizes the 
EDP. This indicates that, to minimize the EDP, application with I 
class in the wait queue should be given the highest priority to be co-
located with any other application running on the server node. The 
next priority is given to H or C applications, since based on the 
results in Figure 5, co-locating them with any other running 
applications results in the lowest EDP. Finally, the lowest priority is 
given to M applications.  

Based on this offline analysis, we implemented a simple  

Table 1: Absolute Percentage Error (%) of training applications  

 LR REPtree MLP 

C-C 38.6 5.67 0.85 

C-I 32.49 2.65 0.35 

C-H 50.91 4.94 0.86 

I-I 51.12 4.87 1.54 

I-H 55.44 5.13 1.148 

I-M 69.09 2.64 0.11 

H-H 52.90 9.64 1.92 

H-M 68.92 2.63 0.11 

M-M 62.86 2.96 0.66 

C-M 69.69 2.69 0.13 

Average 55.20 4.38 0.77 

 
Figure 6: Lookup Table-based Self-tuning prediction 

technique (LkT-STP) 
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decision tree to find which application to co-locate simultaneously. 
The decision tree pseudo code is presented in Figure 4. 

 After pairing, ECoST fine-tunes the architectural, system, and 
application level parameters of the paired applications concurrently. 
This is important, as the results in the previous section highlighted 
the high level of sensitivity of EDP to these parameters particularly 
when running applications with fewer mappers (which occurs when 
two or more applications are co-located at the node level and 
therefore each get fewer mappers). ECoST uses a predictive model 
referred to as self-tuning prediction techniques, or STP, to estimate 
the EDP of each application across a large range of tuning 
parameters. Later in this paper, we provide more details on the 
predictive models we developed and show how they perform 
compared to offline oracle techniques that require extensive brute 
force search to find the best tuning and scheduling.  

 

6. Self-tuning prediction techniques 
As results suggested in the previous section, COLAO achieves 

significant energy efficiency improvement over ILAO across all 
studied applications, Figure 3. However, unlike  ILAO where the 
tuning parameters for individual application are correlated to its 
behavior, whether I/O bound, memory bound, compute-bound or 
hybrid, and can be heuristically set for each class of applications, in 
COLAO the two applications are competing for the shared resources 

creating complex interactions between them. Therefore, while brute 
force search in ILAO can be avoided by simple heuristics based on 
standalone application behavior, COLAO can require an exhaustive 
brute-force search to find the optimal tuning parameters over all 
possible permutations of tuning parameters of the two applications. 
In this section we present self-tuning prediction techniques (STP), 
that attempt to find the best application, system, and architectural 
parameters for incoming unknown MapReduce applications to 
provide the maximum energy efficiency. STP leverages existing 
hardware performance counter information to derive the prediction 
algorithm.   

6.1 Feature Metrics Selection 
Based on the selected resource utilization features and micro-

architectural parameters (Fn), reported in Section 3.2, we construct 
the feature matrix (FM) for training applications that will help 
predict the behavior of unknown MapReduce applications (testing 
applications) based on their resource profiling and micro-
architectural characteristics. We implement the code that classifies 
the application into one of the four classes i.e Compute-bound (C), 
Hybrid (H), I/O-bound (I) and Memory-bound (M). For instance, the 
CPU user utilization of wordcount is higher than the average user 
utilization of the studied applications and with low CPU iowait 
utilization and I/O bandwidth (read/write) rates this application is 
categorized as compute intensive.   
6.2 Database Construction 

To determine what tuning parameters provide the maximum 
energy efficiency for co-located unknown applications (testing set), 
we rely on a database which stores the best configuration parameters 
for a set of known applications (training set). The database is used 
to predict the best configuration parameters for unknown incoming 
applications to achieve the maximum energy-efficiency based on 
application characteristics and input data size, without requiring 
exhaustive brute-force experimental analysis to test all possible 
tuning parameter permutations for all co-located applications. 
Because the database is populated with the best results for various 
co-located applications, this allows us to navigate a complex set of 
highly co-dependent parameters, after simply characterizing each 
application in isolation.  

6.3 Machine Learning based EDP Models 
 We have selected three machine learning-based models for 

predicting optimal configuration of co-located applications. These 
models include linear regression (LR), non-linear regression 
decision tree (REPTree), and Multilayer Perceptron (MLP) which is 
an artificial neural network model. The main reason for selecting 
these models is that they represent three different types of learning 
classifiers; i.e. regression, decision tree and neural network 
emphasizing different accuracy and complexity level. Each model 

Table 2: Error estimation among COLAO, LkT, LR, MLP and REPTree techniques for subset of studied applications 

f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2
2.4 1024 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5

2.4 1024 1 2.4 512 7 2.4 1024 1 2.4 512 7 1.2 256 3 2.4 128 5 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7

2.4 1024 1 2.4 512 7 2.4 512 1 2.4 256 7 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7
2.4 512 1 2.4 512 7 2.4 512 1 2.4 256 7 2.4 512 4 2.4 512 4 2.4 512 1 2.4 256 7 2.4 512 1 2.4 256 7

2 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5

2.4 1024 4 2.4 1024 4 2.4 512 3 2.4 512 5 2.4 256 3 2 512 4 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5

2.4 1024 1 2.4 512 7 2.4 256 1 2.4 256 7 2.4 512 4 2.4 512 4 2.4 512 1 2.4 256 7 2.4 1024 1 2.4 256 7

2.4 1024 4 2.4 1024 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4

Configurations  (Freq_app1, hdfs_app1, map_app1 --- Freq_app2, hdfs_app2, map_app2)

COLAO (Oracle) LkT LR MLP REPTree

Figure 7: Machine Learning Model-based Self-tuning prediction 

technique (MLM-STP) 
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accepts the features of the co-located (unknown) applications as 
input. The output of the model is the optimal configuration 
parameters for the co-located applications to achieve the maximum 
energy efficiency. Table 1 presents the absolute percentage error 
(APE) of the studied learning models where all combinations of 
tuning parameters (number of mappers, frequency and HDFS block 
size) are explored for co-located applications. LR shows to have the 
highest APE of 55%. As the model gets more complex, non-linear 
decision tree model (REPTree) reduces the error significantly. The 
MLP model has the lowest average APE (0.772 %). We have 
integrated these machine-learning models into self-prediction 
techniques, presented in Figure 7.  

6.4 Methodology 
Our proposed self-tuning prediction (STP) techniques 

presented in Figure 6 and Figure 7 include Lookup Table-based self-
prediction technique (LkT-STP) and Machine Learning Model-
based self-prediction technique (MLM-STP).  

LkT-STP Technique  
The first step involves constructing a feature matrix of the 

studied training applications (as explained in the Section 6.1) by 
evaluating their micro-architectures and real time system resource 
utilization i.e.  CPU utilization, memory footprint, number of I/O 
requests (write/read), and IPC. This is done in Step 0 as shown in 
the Figure 6. Resource profiling identifies the runtime 
characteristics and resource utilization of MapReduce applications.  
We have reduced the features metrics to the most vital and distinct 
micro-architecture parameters via PCA analysis to capture the 
characteristics of MapReduce application. Additionally, the 
database contains the optimal configuration parameters providing 
the minimum EDP (as explained in Section 6.2) for all applications 
in the training set. Based on the values from the features matrix, we 
use STP to predict the optimal tuning parameters for unknown 
incoming MapReduce applications as follo
testing applications, App_x and App_y, with a specific input data 
size, are to be run concurrently. In the first step, the feature vectors 
of a subset of the application are created. This is done by running 
the application for a learning period and collecting the features 
information (i.e., LLC MPKI, Branch misprediction, CPU 
utilization, memory footprint, etc.). Second, the cluster algorithm 
classifies the testing application based on the feature matrix 
information. In other words, the classifier chooses the application in 
the database that best resemble the testing applications. Third, we 
scan the database to extract the tuning parameters that provide the 
minimum EDP for the co-located applications.  

MLM-STP Technique 
Similar to LkT-STP, in MLM-STP (presented in Figure 7) we 

construct the feature matrix and store them in a database. Later, we 
build a machine learning model (LR, REPTree, and MLP) based on 
the feature matrix for each specific class (C-bound, I-bound, M-

bound, H -bound), shown in Step 0 (B). For incoming unknown 
applications, we first classify them and then we select the model that 
best suits the characteristics of the applications (Step 3). In Step 4, 
we run the selected model with all permutations of tunable 
parameters. Finally, the configuration parameters correspond to the 
minimum calculated EDP out of the prediction model are selected 
for application run.  

7. Comparison of Self-Tuning Prediction 
Techniques 
In this section, we validate the proposed STP techniques to find 

out how effectively they predict the optimal configuration 
parameters of co-located applications for maximizing the energy 
efficiency. 

For a pair of located applications, given that we study 11 
Hadoop MapReduce applications each with 3 different input data 
sizes, there are 528 different workloads (pair of applications) that 
can be selected. For each application in a workload, given that the 
tuning parameters include 5 different HDFS block sizes, 8 different 
number of mappers, and 4 different operating frequency levels, there 
are 160 possible cases that need to be examined to find the optimal 
set of parameters. Therefore, 84,480 application runs (and their 
associated data sets) are examined in this work to find the best 
offline tuning parameters for each possible pair. To validate STP, 
we divide the dataset into two non-overlapping sets; a training set 
and a testing set.  

The training set (based on the known applications) is used to 
build the database discussed in the Section 6.2. The testing set 
(based on the unknown applications) is used to validate how well 
our proposed STP techniques find the optimal tuning parameters for 
unknown incoming workloads. Note that Naïve Bayes (NB), 
Collaborative Recommendation Filtering (CF), SVM, PageRank 
(PR), Hidden Markov Model (HMM), and K-mean (KM) 
applications are assumed unknown applications and were not used 
to generate the training dataset. Workload can be a combination of 
known applications and unknown applications.    

Table 3: Studied workload scenarios 

 
Figure 8: (a) Training (b) Prediction Computational Complexity of the 

studied algorithms 
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7.1 EDP Error Estimation for Unknown Workloads 
We compared proposed STP techniques with the oracle 

COLAO technique, by calculating the relative EDP difference of the 
two (we will refer to this as error rate). On average, the error rate for 
LkT, LR, REPTree and MLP against COLAO is 8.09%, 20.37%, 
3.84%, and 3.43%, respectively. LR shows substantially higher error 
rate compare to others therefore LR is not considered as a good 
model to configure the optimal parameters. On the other hand, 
REPTree and MLP error rate is lower than (on average) 4%.  

Table 2 presents the error rate and the optimal configuration 
parameters identified using COLAO and STP techniques (LkT, LR, 
MLP and REPTree) for a subset of the studied testing workloads. 
Although the tuning parameters obtained with the COLAO provide 
the maximum energy efficiency, an extensive set of experiments are 
required to uncover them. Our proposed techniques can predict the 
optimal tuning parameters for the unknown incoming MapReduce 
applications within less than (on average) 4% of the upper bound 
using REPTree and MLP, respectively. In the worst case, a 16% 
error with REPTree and MLP machine learning models is still a 
small price to avoid an exhaustive brute-force search. In other cases, 
the STP technique achieves energy efficiency close to the COLAO 
oracle. We achieve this high accuracy despite decoupling decision 
to co-locate and tuning applications, as proposed in Figure 4.  

Overall, the results are quite promising. By decoupling the co-
locating and tuning decisions, we significantly simplify the complex 
optimization problem of searching for the best combination of 
applications to co-located onto a single node, as well as tedious 
navigation to find the right tuning parameters for each application. 
While the decoupling eliminates several possible scheduling and 
tuning optimization decisions, the approximately 3.84% difference 
from an offline oracle scheduler shows its effectiveness, while 
simultaneously making the decision process much simpler. 

7.2 STP overhead  
In this section we discuss the training time and prediction time 

of various models proposed to implement STP. It is important to 
note that while training time is done offline and only once, the 
prediction time is done at run-time and for every new incoming 
application, and therefore is considered as a performance overhead 
for STP.  

Figure 8 shows the average training time as well as the 
prediction time of each STP model. As the complexity of machine 
learning model increases its training time increases as well. The 
training time of LR and REPTree (0.13 sec and 0.06 sec) is orders 
of magnitute lower than the LkT and MLP techniques (15 sec and 
77.8 sec).  However, as discussed the one-time training process is 
not a performance bottleneck. A similar trend is observed for the 
prediction time with the exception of LkT technique. The main 
reason is LkT is a simple look up table-based model, which selects 
predetermined configuration parameters from a small table and is 
the least computationally complex model. Although, MLP error rate 
is the lowest, its relatively long prediction time makes it a less 
favourable choice. REPTree and LkT not only have  low error rates, 
their computation complexity are also low. REPTree is the more 
preferable prediction model compared to LkT as the extensive 
search is required to populate lookup table with the optimal 
configuration parameters. In addition, as compared to REPTree 
model, LkT does not provide any flexibility in selecting the 
configuration parameters for unknown incoming application. 
Overall, REPTree is shown to offer the best trade-offs  between 
accuracy, complexity as well as prediction time compared to other 
predictive models.  

8. Scalability 
In this section, we evaluate the scalability of ECoST on a local 

cluster with 1, 2, 4, and 8 node Intel Atom servers. [Not Pair-NP, 
Not Tune-NT] indicates that we are running applications without 
tuning their configuration parameters. No pairing is done as 
applications are running serially.  

Application Mapping Policies 
We have evaluated the workloads as shown in Table 3, where 

each workload comprises of 16 applications that can be co-located 
via a decision tree (Figure 4) and tuned using STP to achieve 
maximum EDP. With respect to the number of nodes considered in 
a local cluster, the mapping policies studied in this paper are as 
follows:   
1. Serial Mapping [NT]: Each application has access to the entire 

cluster. Serial Mapping is referred as SM. 
2. Multi-Node Level Mapping [NT]: Nodes are divided among 

running applications. For instance, if we have 8 nodes then we 
can run 2 applications in parallel each on 4 nodes 
(MultiNodeLevel1 referred as MNM1) or 4 applications each 
on 2 nodes (MultiNodeLevel2 referred as MNM2).  

3. Single Node Mapping [NT]: Each application is being assigned 
to a single node (all 8 cores of a node are running the 
application). Single Node Mapping is referred as SNM.  

4. Core Balance Mapping [NT]: Two applications are being co-
located on a single node and half the cores (4 cores) are 
assigned to each application to run. Core Balance Mapping is 
referred as CBM.   

5. Predict Tuning Mapping [NP, T]: In this policy, we do not pair  
applications. However, we apply STP technique to predict the 
best configuration parameters to execute each application. 
Predict tuning mapping is referred as PTM. 

6. ECoST [P, T]: This mapping policy presents our proposed 
technique, ECoST. Similar to Core Balance, two applications 
are running in parallel on a single node. However, the number 
of cores assigned to each application is predicted using STP. 
 Furthermore, we have paired the application with respect to 
the decision tree discussed in Figure 4. 

7. UB: Upper bound presents the best pairing and tuning 
configuration parameters obtained through brute force search 
for maximum energy-efficiency.  
Figure 9 presents the EDP results for randomly selected 

workload policies with 1, 2, 4 and 8 nodes at the local cluster. All 
results are normalized to the result of Oracle mapping policy. Serial 
mapping with no tuning (NT) performs poorly. However, mapping 
policies (Multi-Node Level1, Multi-Node Level2 and Single Node) 
that allow multiple applications to run in parallel improve EDP. 
Furthermore, we have studied the impact of co-located applications 
at the node level  Core Balance Mapping and ECoST. Core Balance 
mapping is sensitive to the behavior of applications in a workload. 
Compute-bound (C) and memory-bound (M) workloads illustrate 
poor EDP for Core Balance mapping policy compared to Single 
Node mapping in the workload WS4, WS5, WS7 and WS8. This is 
due to the fact that Compute-bound (C) and memory-bound (M) 
workloads applications with high execution time typically prefers 
the maximum number of cores/mappers and suffers significant 
performance loss when sharing.  

Additionally, we have observed significant EDP improvement 
by fine-tuning the configuration parameters of applications as 
compared to the applications that run without tuning the studied 
parameters. For instance, in the 8 Nodes case, Predict Tuning 



ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.  

 

 

Mapping has on average 53% and 55% better energy efficiency as 
compared to Single Node Mapping and Core Balance Mapping, 
respectively. In addition, we have observed that our proposed 
technique ECoST not only performs better than other studied 
mapping policies, it achieves EDP improvement very close to an 
upper bound brute force technique. In an 8-node server, our 
proposed ECoST technique achieves energy efficiency on average 
within 8% of the upper bound.  

ECoST not only allows more MapReduce applications to 
execute concurrently at the datacenters level by fine-tuning the 
configuration parameters, but also it achieves close to the best 
possible EDP found using an offline policy and exhaustive search. 
We see this across multiple sizes of machines (1, 2, 4 and 8 nodes), 
despite the increasing complexity of the co-locating applications and 
parameter configuration space.   

9. Related Work 
There has been a significant amount of work to address the 

challenge of co-locating applications on multicore processor [21]. 
Several techniques have been developed that perform job scheduling 
to alleviate the shared resource contention. The work in [7] have 
introduced a synthetically generated base vectors and have classified 
the application's usage with respect to the shared resources by co-

scheduling them along the base vectors for selecting the optimal co-
schedules. Many co-scheduling studies on CMP platforms [8, 9] 
investigate shared cache contention-aware scheduling techniques to 
improve the performance and fairness. [12] proposed CRUISE that 
examines the LLC utilization information to schedule multi-
programmed applications on CMP. In [26], authors have used L2 
cache miss rate predictions to schedule suitable threads together on 
a CMP platform. In [27], authors model resource interference of 
server consolidation workloads by estimating cache usage while co-
scheduling two jobs at a time. The work in [15] has studied the co-
scheduled HPC applications by evaluating the affinity-aware 
contention information with the greedy allocation heuristics 
technique. Our work is orthogonal to these resource-awareness 
techniques. [21] proposes the energy-aware thread-to-core 
scheduling policy for heterogeneous multicore processor. Our work 
targets microserver and highlights the fact that Hadoop-based big 
data applications can also be co-scheduled onto one node by 
concurrent fine-tuning of frequency and HDFS block size and still 
remain as energy-efficient as using maximum number of cores.  

Big data frameworks and in particular Hadoop-based 
applications [39] inherent different micro-architectural behavior 
than traditional application (SPEC and PARSEC) [1, 23]. In addition, 
these frameworks have large set of tuning knobs, which individually 
and concurrently influence the scheduling decision. None of above 
techniques therefore are directly applicable for co-scheduling 
outcome of MapReduce applications. It is also important to note that 
most of prior research that focus on scheduling has shown promising 
results, however using simulation-based methods, which cannot 
capture the real-system behavior of complex big data framework.  

Several efforts have sought to reduce the energy consumption 
of Hadoop clusters, e.g. [13]. They have proposed Covering Set 
strategy that reduces the energy consumption of clusters by altering 
the data placement policy in HDFS. The main issue there is that 
roughly 25% servers has to be in the covering set state and they 
cannot be powered off, even if they are not utilized for running 
computations. In addition, this strategy needs understanding on how 
to place the data replicas in HDFS so that servers can be turned off 
without affecting the data availability.  

Scheduling techniques using linear regression to predict the 
performance or energy estimation using traditional applications 
have been addressed in numerous studies [25]. [25] has proposed a 
simulation-based prediction framework for Hadoop to derive 
efficient task scheduling using linear regression. Linear regression 
model, implements a statistical model that assumes a linear 
relationship between input variables and output variable to obtain 
optimal results. Without considering the significance of input 
variable, linear regression model can eliminate any input variable 
that illustrates non-linear relationship against the output variable. As 
we showed in this work, linear regression, based model performs 
poorly in capturing application behavior and finding the best 
parameters to lower the EDP in co-scheduled MapReduce 
applications.  

Some recent researches have investigated the auto-tuning of 
MapReduce configuration parameters using machine learning 
techniques There are others work that looked into other aspects of 

machine learning to solve other issues in computer design[33-38]. 
[16] used machine learning techniques for MapReduce workloads to 
predict the performance by capturing the effects of tuning 
parameters (number of mappers, amount of RAM etc.) on job 
execution time. However, this paper does not discuss the impact of 
parameters on power as well as co-scheduling challenge of Hadoop 

   

 

 
Figure 9: EDP improvement with respect to various mapping policies at (a) 1 

Nodes (b)2 Nodes (c)4 Nodes (d)8 Nodes (top to bottom) 

(A = SM, MNM1, MNM2, SNM, CBM, ECoST) 
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MapReduce applications. [14] builds a machine learning based 
performance model to use it as an auto-tuner for Hadoop 
applications. Considering that this work has performed their analysis 
on only two small Hadoop kernels, we cannot generalize their 
performance model to real-world Hadoop-based applications. 
Unlike ECoST that study the energy efficiency model for the co-
scheduled applications, [14] focuses on the performance model for 
standalone Hadoop application. [16] and [28] use online 
classification to estimate interference between co-located workloads 
that are unlikely to cause interference, however [16] does not auto-
tune the configuration parameters. The work in [28] adopts a similar 
approach to ours; however, it only focuses on performance metric. 
Different from these two works, our work predicts energy-efficiency. 
In addition, unlike [28] and [14], our results illustrates that HDFS 
block size has significant impact on the performance and energy 
efficiency.    

10. Conclusion 
Co-locating and self-tuning incoming applications to the 

datacenter at the node level is a challenging problem, in particular 
for data intensive applications with their complex and deep software 
stacks, and many tuning parameters. For instance, for MapReduce 
applications these decisions are influenced by many tuning 
parameters at the application, system, and architecture levels such 
as number of mappers, HDFS block size, and frequency of the core. 
The large number of tuning parameters in MapReduce provides 
more opportunity for optimization, but it makes it a challenging 
problem.  When considering separately tuned and configured 
multiple co-located applications, the search space and complexity of 
the problem explodes. 

This paper presents ECoST, an energy-efficient co-located and 
self-tuning algorithm for data intensive applications. The ECoST 
methodology was successfully applied to MapReduce framework. 
ECoST first examines the impact of tuning parameters and the 
interplay among them on EDP. In addition, the level of sensitivity 
of EDP to these parameters when running applications with fewer 
mapper slots/cores increases significantly, highlighting the 
importance of fine-tuning when co-locate multiple applications at 
the node level. Based on the characterization results, we develop a 
self-tuning prediction technique to determine the optimal tuning 
parameters at run-time for co-located MapReduce applications. 
ECoST, by decoupling the decision to co-locate applications and 
tuning parameters concurrently, significantly simplifies the complex 
optimization problem of searching for the best combination of 
applications to co-locate onto a single node, and simultaneously 
navigating the wide array of tuning parameters for each application 
and their interplay among them. We studied various machine 
learning based models to implement energy-efficiency prediction in 
ECoST. Overall, our experimental results show that while a neural 
network based prediction method offer highest accuracy, among 
studied machine learning based models, a decision tree based model 
offers the best trade-offs between accuracy, power and complexity 
overhead. In addition, decision tree based model predicts optimal 
parameters for unknown incoming MapReduce applications fairly 
accurately and shows energy efficiency within 4% of the upper 
bound results when co-locating multiple applications at a node level 
and  within 8% of upper bound on an 8-node server 
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