
ECoST: Energy-Efficient Co-Locating and Self-Tuning
MapReduce Applications

Maria Malik1, Hassan Ghasemzadeh2, Tinoosh Mohsenin3, Rosario Cammarota4, Liang Zhao1, Avesta
Sasan1, Houman Homayoun5, Setareh Rafatirad1

 1George Mason University, Fairfax, VA, USA, {mmalik9, lzhao9, asasan, srafatir}@gmu.edu
2Department of Computer Science, Washington State University, USA, hassan@eecs.wsu.edu

3Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County,tinoosh@umbc.edu
4Intel, USA, rosario.cammarota@intel.com
5University of California Davis, CA, USA

ABSTRACT
Datacenters provide high performance and flexibility for users

and cost efficiency for operators. Hyperscale datacenters are

harnessing massively scalable computer resources for large-

scale data analysis. However, cloud/datacenter infrastructure

does not scale as fast as the input data volume and

computational requirements of big data and analytics

technologies. Thus, more applications need to share CPU at the

node level that could have large impact on performance and

operational cost. To address this challenge, in this paper we

show that, concurrently fine-tune parameters at the application,

microarchitecture, and system levels are creating opportunities

to co-locate applications at the node level and improve energy-

efficiency of the server while maintaining performance. Co-

locating and self-tuning of unknown applications are

challenging problems, especially when co-locating multiple big

data applications concurrently with many tuning knobs,

potentially requiring exhaustive brute-force search to find the

right settings. This research challenge upsurges an imminent

need to develop a technique that co-locates applications at a

node level and predict the optimal system, architecture and

application level configure parameters to achieve the maximum

energy efficiency. It promotes the scale-down of computational

nodes by presenting the Energy-Efficient Co-Locating and Self-

Tuning (ECoST) technique for data intensive applications.

ECoST proof of concept was successfully tested on MapReduce

platform. ECoST can also be deployed on other data-intensive

frameworks where there are several parameters for power and

performance tuning optimizations. ECoST collects run-time

hardware performance counter data and implements various

machine learning models from as simple as a lookup table or

decision tree based to as complex as neural network based to

predict the energy-efficiency of co-located

applications. Experimental data show energy efficiency is

achieved within 4% of the upper bound results when co-locating

multiple applications at a node level. ECoST is also scalable,

being within 8% of upper bound on an 8-node server.

1. INTRODUCTION

applications in the emerging domain of big data.
Hyperscale datacenters have gained interest as a promising
computing architecture that is designed to provide a scalable
solution to process mass volume of data [42]. Recent improvements
in the networking, storage, processing and infrastructure
management [10, 11] has made hyperscaling a preferable approach
to respond to the challenges associated with big data. However,
introducing more nodes to existing infrastructural creates challenges
for datacenters providers to balance computational power and
energy efficiency. In addition, the total cost of ownership (TCO)
in hyperscale data centers is one of the major limiting scaling factors.
To address these challenges, many recent works address the need to
use hardware specialized accelerators to increase the performance
by using fewer number of nodes [11]. However, specialized
accelerator reduces the preferable homogeneous computing
environment in datacenters and increases the compatibility issues
for the target big data workloads that are diverse in nature and are
changing at a rapid rate. In addition, the increase in heterogeneity
and in the demand of data center workloads causes an increase in the
infrastructure operating costs. With the substantial expected
increase in the operational cost reflected by the higher energy
consumption and cooling cost of the data center, a need for
microserver-based architectures has been proposed as an alternative
to traditional high-performance architectures to process big data
applications [1, 23, 41].

With the significant increase in the volume of data, more
applications are migrating to cloud. However, cloud infrastructure
is not scaling as fast as the size of data is increasing. Thus, more
applications need to be scheduled at the node level. Therefore, the
question of how to co-locate and configure data-intensive
applications automatically for energy efficiency becomes important
to contain the TCO. In a data-intensive framework such as
MapReduce, configuration parameters, as well as application and
architectural parameters, directly affect its performance and energy
efficiency [22]. Through an extensive and methodical investigation
of performance and energy-efficiency of MapReduce applications,
[32] examine the impact of application, system, and architectural
tuning parameters and the interplay among them on the performance
and energy efficiency for various MapReduce applications. The
results demonstrate how the interplay among various MapReduce
configurations as well as application and architecture level

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP 2019, August 5-8, 2019 Kyoto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08…$15.00
https://doi.org/10.1145/3337821.3337834

ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.

parameters create new opportunities to co-locate MapReduce
applications at the node level. In addition, authors have discussed
two optimization strategies; Individually-Located Application
optimization (ILAO) that runs the applications serially where each
application is tuned individually and Co-Located Application
Optimization (COLAO) that tunes the collocated applications
concurrently at a node level. Given that both of these techniques are
offline and rely on extensive brute force search to find the best
configuration parameters for co-located MapReduce applications,
there is an imminent need to develop a technique that can identify
which applications to co-locate at a node level and how to self-tune
the optimal configure parameters at the system, architecture and
application level to achieve the maximum energy efficiency.
Towards this goal, we develop an energy efficient co-locating and
self-tuning technique, referred as ECoST, for data intensive
applications. While ECoST proof of concept has been successfully
tested on MapReduce framework, which is still a de facto
programming standard of big data and has been adapted widely by
industry and has a large community [2, 3], it can also be deployed
in other data-intensive frameworks where there are several
parameters for power and performance tuning optimizations.

The key features of ECoST are 1) pairing applications to co-
locate at a single node level with the minimum performance
degradation due to resource sharing, and 2) self-tuning prediction
(STP) techniques that predict the optimal application, system and
architectural parameters at run-time for the co-located MapReduce
applications to achieve maximum energy efficiency. By decoupling
the decision to co-locate applications and tuning parameters
concurrently, we significantly simplify the complex optimization
problem of searching for the best pair of applications to co-locate at
the node level, and simultaneously navigating the wide array of
tuning parameters for each application. In addition, we develop
distinct machine learning based models to implement STP including
Linear Regression (LR), REPTree, and Multilayer Perceptron (MLP)
as well as the Lookup Table (LkT) model. These learning models
are significantly different as they have different complexity. All of
these predictive methods are online and will be compared with two
offline scheduling strategies ILAO and COLAO mention in [32].

A closest work to ours is Bubble-up [20], in which authors
introduce a characterization and profiling methodology and predicts
the performance degradation between pairwise application co-
locations. Co-locating traditional desktop and parallel applications
and tuning the underlying processor (such as adapting the voltage
and frequency [17]) has been well studied in the literature [8, 12].
However, data intensive applications such as in MapReduce, have
fundamentally different micro-architectural behavior than
traditional applications highlighted in recent work [23], while at the
same time having significantly more tuning optimization knobs.

For MapReduce applications, it is important to evaluate which
resources (CPU utilization, memory footprint, I/O read and write,
etc.) are bottlenecks and how system-level (number of mappers
running simultaneously in a compute node, HDFS block size),
application-level (application type and input data size) and
architectural-level (operating voltage and frequency) tuning
parameters affect the performance, power, and energy-efficiency.
While several recent works [16, 14] show how tuning individual or
a subgroup of tuning parameters at a time improves performance or
energy-efficiency, they have ignored the interplay among all of these
parameters at various level of abstractions. In addition, while all of
the prior work mainly focused on fine-tuning optimization
parameters for individual applications and in isolation, they have not

studied opportunities for co-optimizing these tuning parameters for
multiple scheduled applications, simultaneously, which is a more
challenging problem to address.

To the best of our knowledge, this is the first work that addresses
these challenges to identify which applications to co-locate at a node
level and determine machine-learning based self-tuning predictive
models to maximize the energy efficiency. In this paper, our analysis
helps to determine how critical it is to jointly fine tune system,
application and architecture level parameters that creates new
opportunities to co-locate MapReduce applications concurrently,
and how to determine these best tuning parameters at the system,
application, and architecture using self-tuning prediction techniques
to achieve the maximum energy efficiency.

2. EXPERIMENTAL SETUP
This section describes our hardware and software platforms used

to run real experiments on reasonable server hardware, studied

application and the tuning parameters, our measurement

methodology, and tools used to enhance our results analysis.

2.1 Hardware/software infrastructure
We conduct our study on an 8-node cluster comprised of Intel

Atom C2758 CPUs. It is important to note that while the choice of
microserver for self-tuning is more challenging due to limited
availability of hardware performance counters compared to high
performance servers such as Xeon, all of the methodologies and
solutions presented in this work can be applied to high performance
servers as well and similar results can be observed. Considering that
MapReduce applications are sensitive to the studied configuration
parameters regardless of the CPU architecture type, optimization
strategies results would remain valid on a high-performance server
architectures as well.

Each studied Intel Atom has 8 processor cores per node and a
two-level cache hierarchy with 8GB of system memory using DDR3
@1600MHz. Although, new big data frameworks have emerged in
recent years in response to continues changes in big data analytics
field; examples include Spark, Tez, Flink, and Petuum, just to name
a few, MapReduce framework such as Hadoop and Spark are still a
de facto standard of big data which has been adapted widely by
industry and has a large community. While not all emerging big data
analytics framework can certainly be included for characterization
and benchmarking in one research work, this paper focuses on the
fundamental Hadoop MapReduce framework for a proof of concept
of ECoST. Our solutions can also be applied to Spark MapReduce
applications, as well as other data intensive frameworks that have
many power and performance tuning knobs. For this study, we have
selected the parameters that are system configurable and transparent
to the user space, namely HDFS block size, input data size per node,
number of mappers, and the operating frequency of the processor.
While there are more tuning parameters to be included, this paper
attempts to provide an in-depth understanding of how concurrent
tuning of the studied parameters at various levels can affect the
performance and energy efficiency. The buffer page caches are
flushed at the start of each run to ensure that data is read fresh from
HDFS.

2.2 Application Diversity
A Hadoop MapReduce cluster can host a variety of big data

applications running concurrently. We have included 11 widely used

Hadoop applications in this research. Four applications are Hadoop

micro-benchmarks, namely Wordcount-WC, Sort-ST, Grep-GP and

TeraSort-TS that are used as kernels in many big data applications.

ECoST: Energy-Efficient Co-Locating and Self-Tuning

MapReduce Applications
ICPP 2019, August 5-8, 2019, Kyoto, Japan

We have also included seven real-world applications namely Naïve

Bayes (NB), FP-Growth (FP), Collaborative Recommendation

Filtering (CF), support vector machine (SVM), PageRank (PR),

Hidden Markov Model (HMM), and K-Mean (KM) [19].

The studied big data workloads are representative programs from
15 different domains such as graph mining, data mining, data
analysis platform and pattern searching applications, which are
frequently used in real world applications. Several recent work have
included these selected applications for benchmarking and
characterization of Hadoop-based big data applications [18].

2.3 Input Data Size
The size of data can have significant impact on micro-

architectural behavior [22]. For this research, we therefore use 3

input data sizes per node for each application; 1GB, 5GB, and 10GB

representing small, medium and large data sets. For instance, 10GB

input data size per node presents 80GB input data size processed by

application in an 8-node cluster. While MapReduce was originally

introduced to process multi-terabyte data in scale-out clusters, most

MapReduce workloads have a footprint in the GB range with the

median of 14GB [30]. Hadoop exploits cluster-level infrastructure

with many nodes for processing big data applications, however, the

experimental data should be collected at the node level to understand

how various optimizations and scheduling decisions affects the

performance, architectural parameters and energy-efficiency at the

node level.

2.4 Interdependent Tuning Parameters
We have studied the impact of the system, application, and

architectural level tuning parameters including the HDFS block size
(64MB, 128MB, 256MB, 512MB, 1024MB), the number of
mappers that run simultaneously on a single node (1-8), and
frequency settings (1.2GHz, 1.6GHz, 2.0GHz, 2.4GHz) to evaluate
how these parameters affect energy efficiency.

2.5 Measurement Tools
We use Perf to capture the performance characteristics of the

studied applications. Perf multiplexes the Performance Monitoring
Unit (PMU) to measure performance as well as other hardware
events, therefore, to obtain accurate values for several hardware
events, we run each workload multiple times. For measuring power
consumption, Wattsup PRO power meter [5] measures and records
power consumption at one-second granularity. The power reading is
for the entire system, including core, cache, main memory, hard
disks and on-chip communication buses. We have collected the
average power consumption of the studied applications and
subtracted the system idle power to estimate the power dissipation
of the core. The same methodology is used in [22], for power and
energy analysis. We use Dstat [6], a system-monitoring tool for
main memory, disk, and CPU utilization analysis and Weka toolkit
[4] to build our machine learning based predictive models.

2.6 Energy Efficiency Metric
In order to characterize the energy efficiency analysis, we

evaluate Energy Delay Product (EDP) metric to investigate trade-
off between power and performance [31]. Energy Delay Product
(ExecutionTime x ExecutionTime x Power) is a fair metric to study
the impact of changing optimization knobs of an architecture.
Without EDP and just using energy metric for comparison, we can
simply reduce the voltage and frequency in an architecture, and
reduce its energy, however at a cost of lowering the performance
(increased execution time). Therefore, performance along with
energy is important to find out the impact of optimization parameters.

3. MapReduce Applications Characterization
In this section, we characterize MapReduce applications by

monitoring the real time system resources as well as micro-
architectural metrics to understand their runtime behavior and
resource utilization. This analysis helps us to generalize the optimal
configuration parameters with respect to the application type.
3.1 Resource Utilization Analysis

To explore the resource utilization of MapReduce applications,
we collect the following metrics:

 CPU utilization. The dstat profiling tool classifies CPU
utilization into different types such as CPUuser, CPUidle,
CPUiowait, etc. We collect the data for CPUuser utilization
which represent CPU usage by a user (usr) processes - and
CPUiowait which represents the percentage of time CPU is idle
waiting for I/O operation to complete.

 I/O read/write Bandwidth, which reports the disk I/O
bandwidth rate.

 Memory Footprint, which reports the minimum amount of
memory (in KB) required to run the application. Additionally,
the MemCache metric shows the amount of file contents kept
in the cache that are yet to be written to the disk.
In addition, we have included several micro-architectural

parameters including, IPC, Instruction Cache Misses per Kilo
instructions (MPKI), LLC MPKI, and Branch Misprediction rate.

3.2 PCA and Clustering Analysis
Unfortunately, there is no single perfect hardware counter that

accurately indicates performance behavior of an application. There

is substantial debate about what hardware counter event can

accurately indicate performance across a variety of applications [1,

29]. In this paper, several micro-architectural metrics and runtime

resource utilization metrics are collected and are used in identifying

MapReduce application characteristics. However, collecting all of

the performance counter data requires multiple runs because the

counter resources are multiplexed in the microserver. In order to

avoid multiple runs, we would like to identify a minimal set of

counters that can be collected in a single run, maximizing correlation

with performance, while minimizing redundant counters (correlated

to each other). These should be representative of application,

software stack, and micro-architecture interactions in the presence

of various system calls.

A systematic approach for this purpose is to use Principal

Component Analysis (PCA). PCA analysis allows us to monitor the

Figure 1: Scatter plot of feature metrics using first and second

principal components

ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.

most vital and distinct micro-architecture parameters to capture

application characteristics. PCA captures most of the data variation

by rotating the original data to a new variable in a new dimension,

commonly known as the principal components (PC). These new

variables are uncorrelated to each other and are a linear combination

of the original data. We employ PCA to project our 14 original

gathered features into a new dimensional space to determine the

most important features along different PC dimensions. The number

of PCs can be less than or equal to the number of original data

variables. In Figure 1, we only present the first two PCs covering

85.22% of the total variance due to space limitation. PCA is

sensitive to the relative scaling of the original variables. Thus, we

have normalized the data to the unit normal distribution for

segregating the impact of the variable range of each feature metric.

Figure 1 shows the scatter plot of the first and second principal

components, PC1 and PC2. Features that appear closer in this Figure

typically exhibit similar behavior.

Later, we apply a hierarchical clustering technique to group

similar features and finally analyze the results as shown in the Figure

1. We have reduced the features to 7 most important and distinct

ones that are CPUuser, CPUiowait, I/O Read, I/O write, IPC,

Memory Footprint, LLC MPKI to characterize the MapReduce

applications. Based on these resource profiling and micro-

architectural characteristics, the applications are characterized into

compute-bound (C), combination of compute-bound, I/O-bound

referred to as hybrid (H), memory-bound (M), and I/O-bound (I)

classes. For instance, the CPU user utilization of wordcount is higher

than the average user utilization of the studied applications and with

low CPU iowait utilization and I/O bandwidth (read/write) rates this

application is categorized as compute intensive. We observe that the

optimal configuration parameters for maximum efficiency are

highly correlated to application type (I/O bound, compute-bound,

memory-bound or hybrid), which can be identified by underlying

micro-architectural behavior. The same methodology is used in [34].

4. Motivation for Fine Tuning and Co-locating
Applications at Node Level

Hadoop MapReduce performance and energy efficiency is
sensitive to many configuration and system parameters; however,
we focus on the parameters that are system configurable and
transparent to the user space, configurable at the user level. This
analysis helps us to determine, 1) whether fine tuning parameters
create new opportunities for co-scheduling applications at the node
level, and 2) whether it is important to carefully fine-tune parameters
to co-locate applications at the node level and still be energy

efficient.

4.1 EDP Improvement Analysis
To determine how important it is to jointly tune the optimization

parameters, we calculate the EDP for various tuning parameters

individually and concurrently. If the EDP improvement is found to

be large, it highlights the importance of carefully fine-tuning

parameters for energy-efficiency; otherwise, an arbitrary selection

would be sufficient. To understand the variation in energy efficiency

with respect to the tuning parameters we present EDP improvement

analysis results in Figure 2 by changing HDFS block size and

frequency individually and concurrently. All EDP results are

normalized to the EDP result of 64MB HDFS block size running at

the minimum operating frequency of 1.2GHz.

 The results show that EDP improvement to HDFS block size
becomes smaller with the increase in the number of mappers.
Similarly, EDP improvement to operating frequency becomes
smaller with the increase in the number of mappers. We also observe
that the concurrent tuning of HDFS block size and frequency
achieves the highest EDP improvement compared to when tuning
them individually. The EDP improvement achieved by concurrently
tuning HDFS block size and operating frequency ranges from 3.73%
to 87.39% compared to the individual tuning parameters. In addition,
the results show that the margin of EDP improvement decreases
with the increase in the number of mappers. It is important to note
that it is not ideal in datacenters to assign all cores of a single node
to a single application, especially for an I/O intensive application
that exhibits a low CPU utilization.
Remark: The results show that applications are more sensitive to

frequency and HDFS block size at small number of mappers.

Therefore, to co-locate applications at the node level, while each

would get fewer mappers/cores allocated, it is critical to determine

the fine-tuned these parameters to observe EDP improvement.

4.2 Co-Locating Applications at the Node Level
As discussed in the previous section, careful fine-tuning of

Figure 3: EDP improvement of training workloads with the same

input data size

Figure 2: EDP improvement analysis w.r.t. HDFS block size and Frequency (individually) and HDFS block size + Frequency (concurrently)

ECoST: Energy-Efficient Co-Locating and Self-Tuning

MapReduce Applications
ICPP 2019, August 5-8, 2019, Kyoto, Japan

parameters made it more likely that maximum energy efficiency is
achieved without utilizing all cores. Thus, we illustrate that co-
locating MapReduce applications on the same server are typically
effective, particularly when the application types are diverse and
have different bottlenecks, as long as they are carefully (and
cooperatively) tuned.

To compare co-located tuned applications with the individually
tuned applications, we study two different optimization strategies:
individually-located application optimization (ILAO) and co-
located application optimization (COLAO). This helps us
understand whether tuning MapReduce applications together or
individually will provide better EDP.

ILAO runs the applications serially where each application is
tuned individually to achieve the maximum energy-efficiency.
COLAO runs multiple applications at a node where application
tuning parameters are optimized concurrently for maximum
energy-efficiency.
In both studied optimization strategies, various combinations

of tuning parameters are explored to find the one that maximizes the
energy efficiency. At the node level given the availability of 8 cores
we can co-locate 8, 6, 4, 2, and 1 application simultaneously.
However, our results indicate that while 2 co-located applications
provide improvement over 1 application in terms of energy
efficiency, co-locating beyond 2 applications (i.e. 4, 6 and 8) at a
node level degrades energy efficiency significantly. Therefore,
throughout this paper we focus mainly on co-locating 2 applications
at the node level.

Figure 3 presents the EDP ratio of ILAO and COLAO
techniques. The studied applications are classified into compute-
bound (C), combination of compute-bound and I/O-bound referred
to as hybrid (H), memory-bound (M) and I/O-bound (I) classes. We
have performed experiments with different combinations of input
data sizes across all studied applications, however due to space
limitation; Figure 3 shows EDP comparison of studied optimization
policies when co-located MapReduce applications have same input

data size. The presented COLAO results are normalized to their
corresponding ILAO values. We observe that in almost all studied
cases COLAO outperforms ILAO in terms of EDP (by upto 4.52x).
Pairing I/O bound applications together results in the highest EDP
gap of 4.52x between COLAO and ILAO. However, the EDP gap
reduces between the two techniques when the memory bound
applications are co-located with other applications. This is because
a memory bound application with high execution time typically
prefers the maximum number of cores/mappers and suffers when
sharing. Overall, the results support the idea of co-locating and
concurrent fine-tuning of applications rather than scheduling/fine-
tuning them individually.

Given that both of these techniques are offline and rely on
extensive brute force search to find the best configuration
parameters for co-located MapReduce applications, there is an
imminent need to develop a technique that can identify which
applications to co-locate at a node level and how to self-tune the
optimal configure parameters at the system, architecture and
application level to achieve the maximum energy efficiency.

5. Energy-Efficient Co-locating and Self-Tunning
(ECoST)
In this section, we propose our technique for energy-efficient

Figure 4: Overview of ECoST

Figure 5: Priority ranking for each co-located class based on EDP

ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.

co-locating and self-tuning of MapReduce applications, called
ECoST. The purpose of this technique is to first classify the
incoming unknown applications to the datacenter in terms of their
architectural behavior and then co-locate and fine-tune them on the
microserver to achieve maximum energy efficiency. By decoupling
the decision to co-locate and tune parameters, ECoST significantly
simplifies the complex optimization problem of searching for the
best combination of applications to co-locate onto a single node, and
simultaneously navigating the wide array of tuning parameters for
each application and their interactions between the applications.
Figure 4, shows an overall view of the ECoST. New jobs
(applications) are arriving to the datacenter and are placed at the tail
of a wait queue. The wait queue is implemented as a FIFO where
applications are scheduled from the head of the queue. To avoid
starvation, the job at the head of the queue has a reservation. A small
job is allowed to leap forward as long as it does not delay the job at
the head of the queue [24, 40].

 Based on what observed in the previous section, it is more
energy-efficient to co-locate and concurrently fine-tune applications
rather than running/fine-tuning them individually. Therefore, for
ECoST scheduler we are assuming that two applications are
scheduled (running) on each server node, and several other
applications are waiting in the wait queue to be paired as soon as any
one of the two applications finishes its execution.

Thus, the research question becomes in steady state which
application from the wait queue to pair with the current application
running on the server node. To address this issue, ECoST works in
the following steps.
Step1: Incoming Application Analyzer/Classifier

The classifier identifies the behavior and characteristics of
unknown incoming applications to the datacenter. First, ECoST
extracts distinct architectural features from the application. Second,
it classifies the application based on the characteristics of known
(training) applications. The training applications are classified into
compute-bound (C), combination of compute-bound and I/O-bound
referred to as hybrid (H), memory-bound (M) and I/O-bound (I)

classes.
Once an incoming application is classified based on collected

architectural features, it is tagged accordingly and steers into the
pool of applications queue; wait queue. As discussed the wait queue
is implemented as FIFO, where applications are allocated from the
tail and selected from the head.
Step 2: Scheduler

The ECoST scheduler attempts to find an application from the
head of wait-queue and co-locate it to the node that is currently
running another application. The goal of the scheduler is to select
the applications to co-locate, which minimizes degradation relative
to running alone. This is in fact a local decision and only attempts to
maximize the energy-efficiency for the applications already
reserved in the head of the queue. It is important to note that the
reservation of applications at the head of the queue is important as it
can alleviate possible starvation of low priority application [24, 40].
As discussed, a small job is allowed to leap forward as long as it
does not delay the job at the head of the queue. To drive the pairing
strategy we use application class information. To this goal, we use
priority ranking of each class, derived from the data in Figure 5. This
figure shows the EDP results for every combination of two
applications along with every combination of core partitioning with
the tuned configuration parameters. The solid line shows the lowest
EDP for each pair of applications across all core partitioning
scenarios. We rank each application pair based on the lowest EDP
they have, within all combinations of core partitioning. As shown,
I-I ranks first and achieves the lowest EDP across all studied cases.
I-C, I-H, H-H, H-C, C-C are ranked next. It is interesting to note that
for M application, no matter what other application it pairs with, it
achieves the highest EDP. Therefore M-X (X being I, H, C or M)
receives the lowest ranking.

To find out which application ECoST selects from the wait
queue to schedule and run along with the current application running
on the server, we analyze the data presented in Figure 5. As shown,
I-I has the lowest EDP compared to I-H, I-C, and I-M; i.e. if the
current application is I, then co-locating it with another I application
waiting in the wait queue minimizes the EDP across all studied cases.
Interestingly, when the current application is H, or C, or even M,
pairing it with an I application from the wait queue minimizes the
EDP. This indicates that, to minimize the EDP, application with I
class in the wait queue should be given the highest priority to be co-
located with any other application running on the server node. The
next priority is given to H or C applications, since based on the
results in Figure 5, co-locating them with any other running
applications results in the lowest EDP. Finally, the lowest priority is
given to M applications.

Based on this offline analysis, we implemented a simple

Table 1: Absolute Percentage Error (%) of training applications

 LR REPtree MLP

C-C 38.6 5.67 0.85

C-I 32.49 2.65 0.35

C-H 50.91 4.94 0.86

I-I 51.12 4.87 1.54

I-H 55.44 5.13 1.148

I-M 69.09 2.64 0.11

H-H 52.90 9.64 1.92

H-M 68.92 2.63 0.11

M-M 62.86 2.96 0.66

C-M 69.69 2.69 0.13

Average 55.20 4.38 0.77

Figure 6: Lookup Table-based Self-tuning prediction

technique (LkT-STP)

ECoST: Energy-Efficient Co-Locating and Self-Tuning

MapReduce Applications
ICPP 2019, August 5-8, 2019, Kyoto, Japan

decision tree to find which application to co-locate simultaneously.
The decision tree pseudo code is presented in Figure 4.

 After pairing, ECoST fine-tunes the architectural, system, and
application level parameters of the paired applications concurrently.
This is important, as the results in the previous section highlighted
the high level of sensitivity of EDP to these parameters particularly
when running applications with fewer mappers (which occurs when
two or more applications are co-located at the node level and
therefore each get fewer mappers). ECoST uses a predictive model
referred to as self-tuning prediction techniques, or STP, to estimate
the EDP of each application across a large range of tuning
parameters. Later in this paper, we provide more details on the
predictive models we developed and show how they perform
compared to offline oracle techniques that require extensive brute
force search to find the best tuning and scheduling.

6. Self-tuning prediction techniques
As results suggested in the previous section, COLAO achieves

significant energy efficiency improvement over ILAO across all
studied applications, Figure 3. However, unlike ILAO where the
tuning parameters for individual application are correlated to its
behavior, whether I/O bound, memory bound, compute-bound or
hybrid, and can be heuristically set for each class of applications, in
COLAO the two applications are competing for the shared resources

creating complex interactions between them. Therefore, while brute
force search in ILAO can be avoided by simple heuristics based on
standalone application behavior, COLAO can require an exhaustive
brute-force search to find the optimal tuning parameters over all
possible permutations of tuning parameters of the two applications.
In this section we present self-tuning prediction techniques (STP),
that attempt to find the best application, system, and architectural
parameters for incoming unknown MapReduce applications to
provide the maximum energy efficiency. STP leverages existing
hardware performance counter information to derive the prediction
algorithm.

6.1 Feature Metrics Selection
Based on the selected resource utilization features and micro-

architectural parameters (Fn), reported in Section 3.2, we construct
the feature matrix (FM) for training applications that will help
predict the behavior of unknown MapReduce applications (testing
applications) based on their resource profiling and micro-
architectural characteristics. We implement the code that classifies
the application into one of the four classes i.e Compute-bound (C),
Hybrid (H), I/O-bound (I) and Memory-bound (M). For instance, the
CPU user utilization of wordcount is higher than the average user
utilization of the studied applications and with low CPU iowait
utilization and I/O bandwidth (read/write) rates this application is
categorized as compute intensive.
6.2 Database Construction

To determine what tuning parameters provide the maximum
energy efficiency for co-located unknown applications (testing set),
we rely on a database which stores the best configuration parameters
for a set of known applications (training set). The database is used
to predict the best configuration parameters for unknown incoming
applications to achieve the maximum energy-efficiency based on
application characteristics and input data size, without requiring
exhaustive brute-force experimental analysis to test all possible
tuning parameter permutations for all co-located applications.
Because the database is populated with the best results for various
co-located applications, this allows us to navigate a complex set of
highly co-dependent parameters, after simply characterizing each
application in isolation.

6.3 Machine Learning based EDP Models
 We have selected three machine learning-based models for

predicting optimal configuration of co-located applications. These
models include linear regression (LR), non-linear regression
decision tree (REPTree), and Multilayer Perceptron (MLP) which is
an artificial neural network model. The main reason for selecting
these models is that they represent three different types of learning
classifiers; i.e. regression, decision tree and neural network
emphasizing different accuracy and complexity level. Each model

Table 2: Error estimation among COLAO, LkT, LR, MLP and REPTree techniques for subset of studied applications

f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2 f1 h1 m1 f2 h2 m2
2.4 1024 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5

2.4 1024 1 2.4 512 7 2.4 1024 1 2.4 512 7 1.2 256 3 2.4 128 5 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7

2.4 1024 1 2.4 512 7 2.4 512 1 2.4 256 7 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7 2.4 1024 1 2.4 256 7
2.4 512 1 2.4 512 7 2.4 512 1 2.4 256 7 2.4 512 4 2.4 512 4 2.4 512 1 2.4 256 7 2.4 512 1 2.4 256 7

2 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5 2.4 1024 3 2.4 512 5

2.4 1024 4 2.4 1024 4 2.4 512 3 2.4 512 5 2.4 256 3 2 512 4 2.4 512 3 2.4 512 5 2.4 512 3 2.4 512 5

2.4 1024 1 2.4 512 7 2.4 256 1 2.4 256 7 2.4 512 4 2.4 512 4 2.4 512 1 2.4 256 7 2.4 1024 1 2.4 256 7

2.4 1024 4 2.4 1024 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4 2.4 512 4

Configurations (Freq_app1, hdfs_app1, map_app1 --- Freq_app2, hdfs_app2, map_app2)

COLAO (Oracle) LkT LR MLP REPTree

Figure 7: Machine Learning Model-based Self-tuning prediction

technique (MLM-STP)

ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.

accepts the features of the co-located (unknown) applications as
input. The output of the model is the optimal configuration
parameters for the co-located applications to achieve the maximum
energy efficiency. Table 1 presents the absolute percentage error
(APE) of the studied learning models where all combinations of
tuning parameters (number of mappers, frequency and HDFS block
size) are explored for co-located applications. LR shows to have the
highest APE of 55%. As the model gets more complex, non-linear
decision tree model (REPTree) reduces the error significantly. The
MLP model has the lowest average APE (0.772 %). We have
integrated these machine-learning models into self-prediction
techniques, presented in Figure 7.

6.4 Methodology
Our proposed self-tuning prediction (STP) techniques

presented in Figure 6 and Figure 7 include Lookup Table-based self-
prediction technique (LkT-STP) and Machine Learning Model-
based self-prediction technique (MLM-STP).

LkT-STP Technique
The first step involves constructing a feature matrix of the

studied training applications (as explained in the Section 6.1) by
evaluating their micro-architectures and real time system resource
utilization i.e. CPU utilization, memory footprint, number of I/O
requests (write/read), and IPC. This is done in Step 0 as shown in
the Figure 6. Resource profiling identifies the runtime
characteristics and resource utilization of MapReduce applications.
We have reduced the features metrics to the most vital and distinct
micro-architecture parameters via PCA analysis to capture the
characteristics of MapReduce application. Additionally, the
database contains the optimal configuration parameters providing
the minimum EDP (as explained in Section 6.2) for all applications
in the training set. Based on the values from the features matrix, we
use STP to predict the optimal tuning parameters for unknown
incoming MapReduce applications as follo
testing applications, App_x and App_y, with a specific input data
size, are to be run concurrently. In the first step, the feature vectors
of a subset of the application are created. This is done by running
the application for a learning period and collecting the features
information (i.e., LLC MPKI, Branch misprediction, CPU
utilization, memory footprint, etc.). Second, the cluster algorithm
classifies the testing application based on the feature matrix
information. In other words, the classifier chooses the application in
the database that best resemble the testing applications. Third, we
scan the database to extract the tuning parameters that provide the
minimum EDP for the co-located applications.

MLM-STP Technique
Similar to LkT-STP, in MLM-STP (presented in Figure 7) we

construct the feature matrix and store them in a database. Later, we
build a machine learning model (LR, REPTree, and MLP) based on
the feature matrix for each specific class (C-bound, I-bound, M-

bound, H -bound), shown in Step 0 (B). For incoming unknown
applications, we first classify them and then we select the model that
best suits the characteristics of the applications (Step 3). In Step 4,
we run the selected model with all permutations of tunable
parameters. Finally, the configuration parameters correspond to the
minimum calculated EDP out of the prediction model are selected
for application run.

7. Comparison of Self-Tuning Prediction
Techniques
In this section, we validate the proposed STP techniques to find

out how effectively they predict the optimal configuration
parameters of co-located applications for maximizing the energy
efficiency.

For a pair of located applications, given that we study 11
Hadoop MapReduce applications each with 3 different input data
sizes, there are 528 different workloads (pair of applications) that
can be selected. For each application in a workload, given that the
tuning parameters include 5 different HDFS block sizes, 8 different
number of mappers, and 4 different operating frequency levels, there
are 160 possible cases that need to be examined to find the optimal
set of parameters. Therefore, 84,480 application runs (and their
associated data sets) are examined in this work to find the best
offline tuning parameters for each possible pair. To validate STP,
we divide the dataset into two non-overlapping sets; a training set
and a testing set.

The training set (based on the known applications) is used to
build the database discussed in the Section 6.2. The testing set
(based on the unknown applications) is used to validate how well
our proposed STP techniques find the optimal tuning parameters for
unknown incoming workloads. Note that Naïve Bayes (NB),
Collaborative Recommendation Filtering (CF), SVM, PageRank
(PR), Hidden Markov Model (HMM), and K-mean (KM)
applications are assumed unknown applications and were not used
to generate the training dataset. Workload can be a combination of
known applications and unknown applications.

Table 3: Studied workload scenarios

Figure 8: (a) Training (b) Prediction Computational Complexity of the

studied algorithms

ECoST: Energy-Efficient Co-Locating and Self-Tuning

MapReduce Applications
ICPP 2019, August 5-8, 2019, Kyoto, Japan

7.1 EDP Error Estimation for Unknown Workloads
We compared proposed STP techniques with the oracle

COLAO technique, by calculating the relative EDP difference of the
two (we will refer to this as error rate). On average, the error rate for
LkT, LR, REPTree and MLP against COLAO is 8.09%, 20.37%,
3.84%, and 3.43%, respectively. LR shows substantially higher error
rate compare to others therefore LR is not considered as a good
model to configure the optimal parameters. On the other hand,
REPTree and MLP error rate is lower than (on average) 4%.

Table 2 presents the error rate and the optimal configuration
parameters identified using COLAO and STP techniques (LkT, LR,
MLP and REPTree) for a subset of the studied testing workloads.
Although the tuning parameters obtained with the COLAO provide
the maximum energy efficiency, an extensive set of experiments are
required to uncover them. Our proposed techniques can predict the
optimal tuning parameters for the unknown incoming MapReduce
applications within less than (on average) 4% of the upper bound
using REPTree and MLP, respectively. In the worst case, a 16%
error with REPTree and MLP machine learning models is still a
small price to avoid an exhaustive brute-force search. In other cases,
the STP technique achieves energy efficiency close to the COLAO
oracle. We achieve this high accuracy despite decoupling decision
to co-locate and tuning applications, as proposed in Figure 4.

Overall, the results are quite promising. By decoupling the co-
locating and tuning decisions, we significantly simplify the complex
optimization problem of searching for the best combination of
applications to co-located onto a single node, as well as tedious
navigation to find the right tuning parameters for each application.
While the decoupling eliminates several possible scheduling and
tuning optimization decisions, the approximately 3.84% difference
from an offline oracle scheduler shows its effectiveness, while
simultaneously making the decision process much simpler.

7.2 STP overhead
In this section we discuss the training time and prediction time

of various models proposed to implement STP. It is important to
note that while training time is done offline and only once, the
prediction time is done at run-time and for every new incoming
application, and therefore is considered as a performance overhead
for STP.

Figure 8 shows the average training time as well as the
prediction time of each STP model. As the complexity of machine
learning model increases its training time increases as well. The
training time of LR and REPTree (0.13 sec and 0.06 sec) is orders
of magnitute lower than the LkT and MLP techniques (15 sec and
77.8 sec). However, as discussed the one-time training process is
not a performance bottleneck. A similar trend is observed for the
prediction time with the exception of LkT technique. The main
reason is LkT is a simple look up table-based model, which selects
predetermined configuration parameters from a small table and is
the least computationally complex model. Although, MLP error rate
is the lowest, its relatively long prediction time makes it a less
favourable choice. REPTree and LkT not only have low error rates,
their computation complexity are also low. REPTree is the more
preferable prediction model compared to LkT as the extensive
search is required to populate lookup table with the optimal
configuration parameters. In addition, as compared to REPTree
model, LkT does not provide any flexibility in selecting the
configuration parameters for unknown incoming application.
Overall, REPTree is shown to offer the best trade-offs between
accuracy, complexity as well as prediction time compared to other
predictive models.

8. Scalability
In this section, we evaluate the scalability of ECoST on a local

cluster with 1, 2, 4, and 8 node Intel Atom servers. [Not Pair-NP,
Not Tune-NT] indicates that we are running applications without
tuning their configuration parameters. No pairing is done as
applications are running serially.

Application Mapping Policies
We have evaluated the workloads as shown in Table 3, where

each workload comprises of 16 applications that can be co-located
via a decision tree (Figure 4) and tuned using STP to achieve
maximum EDP. With respect to the number of nodes considered in
a local cluster, the mapping policies studied in this paper are as
follows:
1. Serial Mapping [NT]: Each application has access to the entire

cluster. Serial Mapping is referred as SM.
2. Multi-Node Level Mapping [NT]: Nodes are divided among

running applications. For instance, if we have 8 nodes then we
can run 2 applications in parallel each on 4 nodes
(MultiNodeLevel1 referred as MNM1) or 4 applications each
on 2 nodes (MultiNodeLevel2 referred as MNM2).

3. Single Node Mapping [NT]: Each application is being assigned
to a single node (all 8 cores of a node are running the
application). Single Node Mapping is referred as SNM.

4. Core Balance Mapping [NT]: Two applications are being co-
located on a single node and half the cores (4 cores) are
assigned to each application to run. Core Balance Mapping is
referred as CBM.

5. Predict Tuning Mapping [NP, T]: In this policy, we do not pair
applications. However, we apply STP technique to predict the
best configuration parameters to execute each application.
Predict tuning mapping is referred as PTM.

6. ECoST [P, T]: This mapping policy presents our proposed
technique, ECoST. Similar to Core Balance, two applications
are running in parallel on a single node. However, the number
of cores assigned to each application is predicted using STP.
 Furthermore, we have paired the application with respect to
the decision tree discussed in Figure 4.

7. UB: Upper bound presents the best pairing and tuning
configuration parameters obtained through brute force search
for maximum energy-efficiency.
Figure 9 presents the EDP results for randomly selected

workload policies with 1, 2, 4 and 8 nodes at the local cluster. All
results are normalized to the result of Oracle mapping policy. Serial
mapping with no tuning (NT) performs poorly. However, mapping
policies (Multi-Node Level1, Multi-Node Level2 and Single Node)
that allow multiple applications to run in parallel improve EDP.
Furthermore, we have studied the impact of co-located applications
at the node level Core Balance Mapping and ECoST. Core Balance
mapping is sensitive to the behavior of applications in a workload.
Compute-bound (C) and memory-bound (M) workloads illustrate
poor EDP for Core Balance mapping policy compared to Single
Node mapping in the workload WS4, WS5, WS7 and WS8. This is
due to the fact that Compute-bound (C) and memory-bound (M)
workloads applications with high execution time typically prefers
the maximum number of cores/mappers and suffers significant
performance loss when sharing.

Additionally, we have observed significant EDP improvement
by fine-tuning the configuration parameters of applications as
compared to the applications that run without tuning the studied
parameters. For instance, in the 8 Nodes case, Predict Tuning

ICPP 2019, August 5-8, 2019, Kyoto, Japan M. Malik et al.

Mapping has on average 53% and 55% better energy efficiency as
compared to Single Node Mapping and Core Balance Mapping,
respectively. In addition, we have observed that our proposed
technique ECoST not only performs better than other studied
mapping policies, it achieves EDP improvement very close to an
upper bound brute force technique. In an 8-node server, our
proposed ECoST technique achieves energy efficiency on average
within 8% of the upper bound.

ECoST not only allows more MapReduce applications to
execute concurrently at the datacenters level by fine-tuning the
configuration parameters, but also it achieves close to the best
possible EDP found using an offline policy and exhaustive search.
We see this across multiple sizes of machines (1, 2, 4 and 8 nodes),
despite the increasing complexity of the co-locating applications and
parameter configuration space.

9. Related Work
There has been a significant amount of work to address the

challenge of co-locating applications on multicore processor [21].
Several techniques have been developed that perform job scheduling
to alleviate the shared resource contention. The work in [7] have
introduced a synthetically generated base vectors and have classified
the application's usage with respect to the shared resources by co-

scheduling them along the base vectors for selecting the optimal co-
schedules. Many co-scheduling studies on CMP platforms [8, 9]
investigate shared cache contention-aware scheduling techniques to
improve the performance and fairness. [12] proposed CRUISE that
examines the LLC utilization information to schedule multi-
programmed applications on CMP. In [26], authors have used L2
cache miss rate predictions to schedule suitable threads together on
a CMP platform. In [27], authors model resource interference of
server consolidation workloads by estimating cache usage while co-
scheduling two jobs at a time. The work in [15] has studied the co-
scheduled HPC applications by evaluating the affinity-aware
contention information with the greedy allocation heuristics
technique. Our work is orthogonal to these resource-awareness
techniques. [21] proposes the energy-aware thread-to-core
scheduling policy for heterogeneous multicore processor. Our work
targets microserver and highlights the fact that Hadoop-based big
data applications can also be co-scheduled onto one node by
concurrent fine-tuning of frequency and HDFS block size and still
remain as energy-efficient as using maximum number of cores.

Big data frameworks and in particular Hadoop-based
applications [39] inherent different micro-architectural behavior
than traditional application (SPEC and PARSEC) [1, 23]. In addition,
these frameworks have large set of tuning knobs, which individually
and concurrently influence the scheduling decision. None of above
techniques therefore are directly applicable for co-scheduling
outcome of MapReduce applications. It is also important to note that
most of prior research that focus on scheduling has shown promising
results, however using simulation-based methods, which cannot
capture the real-system behavior of complex big data framework.

Several efforts have sought to reduce the energy consumption
of Hadoop clusters, e.g. [13]. They have proposed Covering Set
strategy that reduces the energy consumption of clusters by altering
the data placement policy in HDFS. The main issue there is that
roughly 25% servers has to be in the covering set state and they
cannot be powered off, even if they are not utilized for running
computations. In addition, this strategy needs understanding on how
to place the data replicas in HDFS so that servers can be turned off
without affecting the data availability.

Scheduling techniques using linear regression to predict the
performance or energy estimation using traditional applications
have been addressed in numerous studies [25]. [25] has proposed a
simulation-based prediction framework for Hadoop to derive
efficient task scheduling using linear regression. Linear regression
model, implements a statistical model that assumes a linear
relationship between input variables and output variable to obtain
optimal results. Without considering the significance of input
variable, linear regression model can eliminate any input variable
that illustrates non-linear relationship against the output variable. As
we showed in this work, linear regression, based model performs
poorly in capturing application behavior and finding the best
parameters to lower the EDP in co-scheduled MapReduce
applications.

Some recent researches have investigated the auto-tuning of
MapReduce configuration parameters using machine learning
techniques There are others work that looked into other aspects of

machine learning to solve other issues in computer design[33-38].
[16] used machine learning techniques for MapReduce workloads to
predict the performance by capturing the effects of tuning
parameters (number of mappers, amount of RAM etc.) on job
execution time. However, this paper does not discuss the impact of
parameters on power as well as co-scheduling challenge of Hadoop

Figure 9: EDP improvement with respect to various mapping policies at (a) 1

Nodes (b)2 Nodes (c)4 Nodes (d)8 Nodes (top to bottom)

(A = SM, MNM1, MNM2, SNM, CBM, ECoST)

ECoST: Energy-Efficient Co-Locating and Self-Tuning

MapReduce Applications
ICPP 2019, August 5-8, 2019, Kyoto, Japan

MapReduce applications. [14] builds a machine learning based
performance model to use it as an auto-tuner for Hadoop
applications. Considering that this work has performed their analysis
on only two small Hadoop kernels, we cannot generalize their
performance model to real-world Hadoop-based applications.
Unlike ECoST that study the energy efficiency model for the co-
scheduled applications, [14] focuses on the performance model for
standalone Hadoop application. [16] and [28] use online
classification to estimate interference between co-located workloads
that are unlikely to cause interference, however [16] does not auto-
tune the configuration parameters. The work in [28] adopts a similar
approach to ours; however, it only focuses on performance metric.
Different from these two works, our work predicts energy-efficiency.
In addition, unlike [28] and [14], our results illustrates that HDFS
block size has significant impact on the performance and energy
efficiency.

10. Conclusion
Co-locating and self-tuning incoming applications to the

datacenter at the node level is a challenging problem, in particular
for data intensive applications with their complex and deep software
stacks, and many tuning parameters. For instance, for MapReduce
applications these decisions are influenced by many tuning
parameters at the application, system, and architecture levels such
as number of mappers, HDFS block size, and frequency of the core.
The large number of tuning parameters in MapReduce provides
more opportunity for optimization, but it makes it a challenging
problem. When considering separately tuned and configured
multiple co-located applications, the search space and complexity of
the problem explodes.

This paper presents ECoST, an energy-efficient co-located and
self-tuning algorithm for data intensive applications. The ECoST
methodology was successfully applied to MapReduce framework.
ECoST first examines the impact of tuning parameters and the
interplay among them on EDP. In addition, the level of sensitivity
of EDP to these parameters when running applications with fewer
mapper slots/cores increases significantly, highlighting the
importance of fine-tuning when co-locate multiple applications at
the node level. Based on the characterization results, we develop a
self-tuning prediction technique to determine the optimal tuning
parameters at run-time for co-located MapReduce applications.
ECoST, by decoupling the decision to co-locate applications and
tuning parameters concurrently, significantly simplifies the complex
optimization problem of searching for the best combination of
applications to co-locate onto a single node, and simultaneously
navigating the wide array of tuning parameters for each application
and their interplay among them. We studied various machine
learning based models to implement energy-efficiency prediction in
ECoST. Overall, our experimental results show that while a neural
network based prediction method offer highest accuracy, among
studied machine learning based models, a decision tree based model
offers the best trade-offs between accuracy, power and complexity
overhead. In addition, decision tree based model predicts optimal
parameters for unknown incoming MapReduce applications fairly
accurately and shows energy efficiency within 4% of the upper
bound results when co-locating multiple applications at a node level
and within 8% of upper bound on an 8-node server

References
1. M. Malik, et al. "System and architecture level characterization of big data

applications on big and little core server architectures," in TOMPECS 2018

2. M. Ferdman, et al. "Clearing the clouds: a study of emerging scale-out
workloads on modern hardware." In ACM SIGPLAN 2012

3.
mapreduce-

4. Weka: https://www.ibm.com/developerworks/library/os-weka1/
5.
6. -linux-monitoring-tools/.
7. ential technique for microarchitectural

8. -scheduling on chip

9.

in the 2nd Workshop on CMP-MSI 2008.
10. - MICRO

2016
11. http://www.storageswitzerland.com/Articles/Entries/2013/5/20_What_Is_A_H

yperscale_Data_Center.html
12. -

SIGARCH Computer Architecture News, 2012
13.

HotPower, 2009.
14. N. Yigitbasi, et al. "Towards machine learning-based auto-tuning of

mapreduce." In MASCOTS 2013
15. - es for many-task applications in

16. C. Delimitrou, et al. "Paragon: QoS-aware scheduling for heterogeneous

datacenters." In ACM SIGPLAN 2013.
17. C. Wu, et al. "A green energy-efficient scheduling algorithm using the DVFS

technique for cloud datacenters." In FGCS 2014
18. Dimitrov, Martin, et al. "Memory system characterization of big data

workloads." In Big Data 2013
19. Apache Mahout: scalable machine-learning and data-mining library
20. -up: Increasing utilization in modern warehouse scale

computers via sensible co-
21. -aware thread co-location in heterogeneous multicore

22. M. Malik, et al. "Characterizing Hadoop applications on microservers for

performance and energy efficiency optimizations," in ISPASS 2016
23. -Aware Hadoop Workflow

 MASCOTS 2014
24. G. Sabin, et al. "Scheduling of parallel jobs in a heterogeneous multi-site

environment." In JSSPP 2003
25. K. Choi, et al "Dynamic voltage and frequency scaling based on workload

decomposition." In ISLPED 2004
26. Fedorova, et al. "Performance of multithreaded chip multiprocessors and

implications for operating system design." 2005
27. L. Tang, et al. "The impact of memory subsystem resource sharing on datacenter

applications." In ISCA 2011
28. C. Delimitrou, et al. "Quasar: resource-efficient and QoS-aware cluster

management." In ACM SIGPLAN 2014.
29. Rodinia benchmark suite with

30. R. Appuswamy, Raja, et al. "Scale-up vs scale-out for hadoop: Time to

rethink?." In SoCC 2013
31. Li, Sheng, et al. "McPAT: an integrated power, area, and timing modeling

framework for multicore and many core architectures." In. MICRO, 2009
32. -Locating and concurrent fine-tuning MapReduce

33. Power Conversion Efficiency-Aware Mapping of Multithreaded

Applications on Heterogeneous Architectures: A Comprehensive Parameter
Tuning

34. H Makrani et al XPPE: Cross-Platform Performance Estimation of Hardware
Accelerators Using Machine Learning

35. H Sayadi et al, Specialized Hardware-Supported Malware Detection Using
Machine Learning Techniques in TDSC 2018

36. -aware and Machine Learning based Resource
Provisioning of In-

37. Hossein Sayadi et al. 2017. Machine learning-based approaches for energy
efficiency prediction and scheduling in composite cores architectures. In ICCD.

38. Hossein Sayadi et al. 2018. Customized machine learning-based hardware-
assisted malware detection in embedded devices. In TrustCom/BigDataSE. [22]

39. Li, et al. "CloudCmp: comparing public cloud providers." In ACM SIGCOMM
2010.

40. G. Sabin, et al. "Job fairness in non-preemptive job scheduling." In ICPP 2004
41. M. Malik, et al. Big vs Little Core for Energy-Efficient Hadoop Computing

in JPDC 2018
42. R. L. Villars, et al., "Big data: What it is and why you should care." in IDC 14

(2011): 1-14.

